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ABSTRACT

Numerous oceanic and atmospheric phenomena influence El Niño–Southern Oscillation (ENSO) vari-

ability, complicating both prediction and analysis of the mechanisms responsible for generating ENSO di-

versity. Predictability of ENSO events depends on the characteristics of both the forecast initial conditions

and the stochastic forcing that occurs subsequent to forecast initialization. Within a linear inverse model

framework, stochastic forcing reduces ENSO predictability when it excites unpredictable growth or in-

terference after the forecast is initialized, but also enhances ENSO predictability when it excites optimal

initial conditions that maximize deterministic ENSO growth. Linear inverse modeling (LIM) allows for

straightforward separation between predictable signal and unpredictable noise and so can diagnose its own

skill. While previous LIM studies of ENSO focused on deterministic dynamics, here we explore how noise

forcing influences ENSO diversity and predictability. This study identifies stochastic forcing details poten-

tially contributing to the development of central Pacific (CP) or eastern Pacific (EP) ENSO characteristics.

The technique is then used to diagnose the relative roles of initial conditions and noise forcing throughout the

evolution of several ENSO events. LIM results show varying roles of noise forcing for any given event, high-

lighting its utility in separating deterministic from noise-forced contributions to the evolution of individual

ENSO events. For example, the strong 1982 event was considerably more influenced by noise forcing late in its

evolution than the strong 1997 event, which was more predictable with long lead times due to its deterministic

growth. Furthermore, the 2014 deterministic trajectory suggests that a strong event in 2014 was unlikely.

1. Introduction

El Niño–SouthernOscillation (ENSO) is the dominant

source of interannual climate variability on Earth (see,

e.g., Wallace et al. 1998), with large impacts on global

climate patterns (Diaz et al. 2001; Alexander et al. 2002).

While theories exist to explain the gross spatial and tem-

poral characteristics of ENSO event evolution (Zebiak

and Cane 1987; Battisti 1988; Suarez and Schopf 1988;

Battisti and Hirst 1989; Penland and Sardeshmukh 1995;

Jin 1997; Neelin et al. 1998), individual ENSO events show

considerable diversity in their spatial details, evolution,

predictability, and timing [see Capotondi et al. (2015) for a

review]. Spatial diversity, often characterized using terms

such as central Pacific (CP) or eastern Pacific (EP) (e.g.,

Ashok et al. 2007;Kao andYu 2009;Kug et al. 2009, 2010a;
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Yu and Kim 2011; Newman et al. 2011b; Kim et al. 2012a;

Kim et al. 2012b; Capotondi 2013; Capotondi et al. 2015),

arises due to the varying roles of different physical pro-

cesses allowing any given ENSO event to have a contin-

uous range ofCP andEP characteristics (Karnauskas 2013;

Capotondi et al. 2015). This study provides a general

framework to identify and characterize the role of these

physical processes in generatingENSOdiversity within the

context of the dynamically evolving ENSO system.

Several studies have shown that atmospheric and oce-

anic midlatitude variability help generate initial struc-

tures in the tropical Pacific that lead to ENSO diversity.

Vimont et al. (2014) use linear inverse modeling (LIM;

Penland and Sardeshmukh 1995) to identify optimal ini-

tial conditions leading to ENSO events with either CP or

EP characteristics. They find that CP-related initial con-

ditions are associated with the Pacific meridional mode

(PMM; Chiang and Vimont 2004) through the ‘‘seasonal

footprinting mechanism’’ (Vimont et al. 2001, 2003a,

2003b, 2009; Zhang et al. 2009; Yu and Kim 2011; Park

et al. 2013). Southern Hemisphere atmospheric variabil-

ity has also been shown to generate initial heat content

anomalies that can influence EP-type ENSO events (You

and Furtado 2017). Other studies show that ENSO di-

versity is associated with initial oceanic heat content

anomalies, ocean dynamics, and basin-wide thermocline

variations (Meinen and McPhaden 2000; Kao and Yu

2009; Kug et al. 2010a; Horii et al. 2012; Fedorov et al.

2015). Finally, ENSO initial conditions have been associ-

ated with forcing from the tropical Indian Ocean or from

the subtropical Atlantic (e.g., Penland and Matrosova

2006, 2008; Rodríguez-Fonseca et al. 2009; Martín-Rey

et al. 2012).

Variations in stochastic forcing (here we loosely define

stochastic or external forcing as forcing that is external to

the essential deterministic dynamics that produce ENSO

variability) have also been shown to generate ENSO di-

versity. Newman et al. (2011b) show that ENSO diversity

arises naturally in a stochastically forced linear inverse

model simulation with an unchanging dynamical de-

scription, confirming that stochastic forcing is a sufficient

condition for generating ENSO diversity. Studies also

show that ENSO events with strong EP characteristics,

such as the 1997/98 El Niño event, are influenced by

westerlywindbusts (WWBs) and zonalwind variability in

thewestern tropical Pacific (Boulanger andMenkes 1999;

McPhaden 1999; Harrison and Chiodi 2009; Kug et al.

2010b; Fedorov et al. 2015; Chen et al. 2015). It has also

been shown that strong ENSO events, which typically

have EP characteristics, are more strongly influenced by

state-dependent wind stress variations (Perez et al. 2005;

Gebbie et al. 2007; Kapur and Zhang 2012; Levine

et al. 2016).

LIM provides an observationally based, empirical

model that approximates slow dynamical processes via a

deterministic linear dynamical operator, and the effect

of fast processes as Gaussian white noise. Penland and

Sardeshmukh (1995) use LIM to show that ENSO

growth can occur via nonnormal processes in a linearly

stable dynamical system. In that case, stochastic forcing

both maintains climatological variance and explains the

observed temporal irregularities of ENSO variability.

Penland (1996) shows that a time-independent linear

approximation of the slow dynamics of the Indo-Pacific

forced by seasonally varying noise can account for ob-

served temporal ENSO behaviors, such as the seasonal

ENSO phase locking.

Demonstrated forecast skill of the LIM (e.g., Penland

and Magorian 1993; Penland and Matrosova 1998;

Newman 2007; Alexander et al. 2008; Newman et al.

2011a; Newman and Sardeshmukh 2017) motivated its

use as a diagnostic tool for understanding the physical

processes that generate ENSO variability. LIM allows

for an objective, observationally grounded calculation

of the initial state that maximizes deterministic growth

toward a specified final state. Previous studies show that

the optimal initial conditionsmaximizing tropical Pacific

SST growth contain SST anomalies north of the equator

and in the far eastern equatorial Pacific (Penland and

Sardeshmukh 1995; Newman et al. 2011a). Newman

et al. (2011a) also show that the optimal initial condi-

tions contain positive thermocline depth anomalies

throughout the central tropical Pacific. Capotondi and

Sardeshmukh (2015) use LIM to show the importance of

the thermocline initial state and suggest SST precursors

alone are not sufficient to capture the development of

ENSO diversity.

A variety of physical processes have been proposed to

explain ENSO diversity. In this study, we take a forecast

perspective in which the evolution of an individual

ENSO event from a given time depends on (i) the spe-

cific set of initial conditions that determine how the

system will evolve along its deterministic trajectory, as

well as (ii) the ‘‘external’’ forcing that, when convolved

with the dynamics, pushes the system away from (in

general) the deterministic trajectory. A third possibility

exists that ENSO diversity is caused by variations in the

internal dynamics responsible for ENSO evolution (e.g.,

Fedorov and Philander 2000, 2001; An and Wang 2000;

An and Jin 2000; Wang and An 2002; Yeh et al. 2009;

Capotondi and Sardeshmukh 2017). Here, we focus

solely on the role of the initial conditions and stochastic

forcing in generating ENSO diversity.

Although previous studies have characterized the op-

timal initial conditions for maximum CP and EP growth

(Vimont et al. 2014; Capotondi and Sardeshmukh 2015),
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the specific structures within the stochastic forcing that

generate these initial conditions have not been identified.

In this study, we characterize the role of stochastic forcing

mechanisms in generating CP or EP characteristics using

a LIM forecast framework to separate the deterministic

evolution of the tropical Pacific from the unpredictable, or

noise forced, evolution.Within the forecasting framework,

it is possible the noise forcing can excite optimal initial

conditions that enhance deterministic growth and, thus,

improve the predictability of an event. However, the same

stochastic forcing may reduce the predictability of the

event if it excites the growth of prediction errors after the

forecast is initialized or perturbs the state of the tropical

Pacific away from expected ENSO growth.

The analysis herein is strongly motivated by the results

of Newman and Sardeshmukh (2017), who show that

forecasts of tropical Indo-Pacific SST anomalies using

LIM have comparable skill to multimodel ensemble

mean forecasts made using the full nonlinear coupled

ocean–atmosphere models of the North American

Multimodel Ensemble (NMME; Kirtman et al. 2014).

Both forecast techniques have spatial and temporal

variations of skill that are similar both to each other and

to the potential skill estimated from the forecast signal-

to-noise ratios within a perfect linear inverse model

framework. This suggests that the deterministic evolu-

tion of ENSO evolution can be estimated by a linear

approximation to the dynamics. As such, the linear in-

verse model can be used as a ‘‘filter’’ to remove the

deterministic component and, hence, to diagnose the

role of noise in the evolution of individual ENSOevents;

this is not easily accomplished using the full nonlinear

GCMs. Following the methods outlined in Penland

and Hartten (2014), we empirically calculate the noise

forcing conducive to CP and EP growth directly from

observations. We then identify the physical mechanisms

within the noise forcing that lead to CP or EP growth

and estimate the role of noise forcing during the 1982/83

and 1997/98 EP ENSO events, the 2009/10 CP ENSO

event, the 2015/16 ENSO event, and the ‘‘failed’’ event

of 2014. The implications for CP and EP ENSO pre-

dictability will be discussed.

This paper is organized as follows. Section 2 of this

paper describes the methods for empirically estimating

the linear dynamics of the tropical Pacific from obser-

vations, the optimal initial conditions that maximize CP

and EP growth. Section 3 explains the methodology for

calculating the noise forcing of the CP and EP optimal

initial conditions and presents the structures within the

noise forcing that lead to CP and EP growth. Section 4

analyzes the role of the noise forcing and dynamics

during past CP andEPENSOevents. Section 5 discusses

the implications of the results.

2. Methods

a. Data

The linear inverse model is developed using monthly

optimally interpolated SST (OISST; Reynolds et al.

2002) in the tropical Pacific (258S–258N, 1208–2858E)
and monthly thermocline depth, calculated as the depth

of the 208 isotherm (Z20) from the NCEPGlobal Ocean

Data Assimilation System (GODAS; Behringer and

Xue 2004), between 258S–258N and 1208–2858E. The
SST and Z20 data, from 1982 to 2016, are averaged onto

28 latitude3 58 longitude grids. The annual cycle for each
dataset is removed by subtracting the 1982–2016 monthly

climatological mean from each month. The monthly

anomalies are then smoothed with a 3-month running

mean and detrended using linear regression.Wenote that

Vimont et al. (2014) develop a linear inverse model using

the HadISST product (Rayner et al. 2003) and SODA

reanalysis (Carton andGiese 2008), and recover the same

results as shown in Fig. 1.

EOF analysis is applied as a prefilter to the monthly

SST and Z20 anomalies, so that our analysis is done in

the space of the leading nine SST EOFs and three Z20

EOFs. For reference, the leading two EOFs of SST and

Z20 are shown in Figs. S1a–d in the online supplemental

material. The leading EOF of SST (explaining 52.1% of

the variance) shows a typical canonical ENSO pattern,

while the second EOF (12.1% of the variance) strongly

projects onto the SST pattern known as the PMM. For

reference, the temporal correlation between the PMM

time series and PC2 is r 5 0.82. Supplemental Figs. S1e

and S1f show the SST patterns of CP and EP events

based upon the Takahashi et al. (2011) definition for the

C and E indices as follows:

C5

 
PC1ffiffiffiffiffi
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1

p 1
PC2ffiffiffiffiffi
l
2

p
!, ffiffiffi

2
p

E5

 
PC1ffiffiffiffiffi
l
1

p 2
PC2ffiffiffiffiffi
l
2

p
!, ffiffiffi

2
p

, (1)

where PC1 is the first principal component of SST, PC2

is the second principal component, and l1 and l2 are the

corresponding eigenvalues. These definitions are used in

section 2b to specify the direction of growth in order to

estimate the CP and EP optimal initial conditions.

SST pentad means are calculated from daily OISST

data from 1982 to 2016. The Z20 pentad means are cal-

culated from daily GODAS thermocline depths from

1982 to 2016 (again, the thermocline depth is calculated as

the depth of the 208 isotherm). Both SST and Z20 pentad

data are averaged onto the same 28 latitude3 58 longitude

15 NOVEMBER 2018 THOMAS ET AL . 9127



grid as the monthly data. The annual cycle is removed,

the data detrended and smoothed with a five-pentad

running mean (see section 3b). Similarly, pentad means

of several different global quantities are calculated from

daily NCEP–NCAR Reanalysis 1 data (Kalnay et al.

1996) between 1982 and 2016. To determine anomalies,

the annual cycle is removed and the data detrended for

each variable.

b. Linear inverse model

LIM approximates the evolution of a dynamical system,

in this case the tropical Pacific, by a multivariate linear

model as follows (Penland and Sardeshmukh 1995):

dx

dt
5Lx1 j, (2)

where x is the anomalous state of the system, L is the

dynamical system matrix representing the linearized

approximation to the dynamics of the system (including

the linear approximation to the nonlinear dynamics),

and j is the white noise forcing. The dynamical system

matrix L can be empirically estimated from a set of ob-

servations as presented below, and an empirical estima-

tion of the noise forcing j is presented in section 2b.

Previous studies show the tropical Pacific is well repre-

sented by this stochastically forced linear system (Penland

and Sardeshmukh 1995; Penland 1996). Within this linear

inverse model framework, the evolution of the state x can

be described as

x(t)5 eL(t2t0)x(t
0
)1

ðt
t0

eL(t2s)j(s) ds, (3)

where the first term on the right-hand side of the equation

represents the deterministic, or predicable, evolution of the

system from time t0 to t (see, e.g., Chang et al. 2004) and the

second term represents the nondeterministic, unpredict-

able, or noise forced, part of the system. Note that the

second term convolves the stochastic forcing in (2) with the

deterministic dynamical evolution through the remaining

forecast time. If the linear model perfectly represents the

system, the second term is equal to the forecast error.

It can be shown that the correlation between x(0) and

the second term of (3) is zero. We define Gt the ‘‘Green

function’’ or propagator matrix as the matrix yielding

the linear inverse model forecast x0(t) when operating

on initial conditions x(0):

x0(t)5 eLtx(0)[G
t
x(0), (4)

where x0(t) is the forecast of the final state at time t and

x(0) is the initial state. From (4), one can derive Gt and

L from the lagged covariance statistics of the system:

G
t
5C

t
C21

0 and (5)

L5 ln(G
t
)/t, (6)

where Ct is the t-lag covariance matrix of the state

vector x and C0 is the zero-lag covariance matrix of the

FIG. 1. SST (8C; shading) and thermocline depth (m; black contours) for t 5 6 month CP and EP (a),(c) optimal

initial conditions and (b),(d) final states. SST contour interval is 0.48C for the optimals and 0.88C for the final

conditions. Thermocline depth contour interval is 4m for the optimals and 8m for the final conditions. Positive

(negative) thermocline depth anomalies correspond to solid (dashed) contours. The zero contour has been omitted.
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state vector x. As previously mentioned, the linear op-

eratorL governs the deterministic evolution of the system

over a specific time period t. Themaximum amplification

(e.g., Penland and Sardeshmukh 1995, Fig. 4) curve in-

dicates that the system experiences maximum growth

over a time period of about 9 months. The growth curve

of the error energy intersects the maximum amplification

curve around 23 months, which represents the predict-

ability limit of the system (results not shown).

We define the state vector x as in Vimont et al. (2014)

with sea surface temperature (SST) and thermocline

depth (Z20) as follows:

x5 (Z
SST

,Z
Z20

), (7)

where ZSST represents the leading nine SST principal

components (PCs) (88.1% of the variance) and ZZ20 the

leading three Z20 PCs (45.8% of the variance). The PCs

of the state vector are normalized by the square root of

the total variance of the respective field; that is, ZSST is

normalized by the square root of the sum of all SST ei-

genvalues, and ZZ20 is normalized by the square root of

the sum of all Z20 eigenvalues.

c. Optimal initial conditions

The noise forcing that will maximize the deterministic

growth toward CP or EP events will be the noise that

pushes the system toward generating the associated

optimal initial conditions. Therefore, we first calculate

the optimal initial conditions that maximize either CP

or EP growth. Using the previously calculated linear

dynamics of the system (6), we are able to determine

the initial state that maximizes the deterministic growth

in a given direction (Penland and Sardeshmukh 1995;

Newman et al. 2011a; Vimont et al. 2014). The resulting

initial structures are, hereafter, referred to as optimal

initial conditions. The optimal initial conditions that

maximize growth toward the CP and EP final conditions

are calculated by following the methodology of Vimont

et al. (2014). Based upon the definition of CP and EP

events (1), we define the vector coordinate directions for

the CP and EP events as follows:

n
CP

5

(
1ffiffiffiffiffiffiffi
2l

1

p ,
1ffiffiffiffiffiffiffi
2l

2

p , 0, 0, . . .

)

n
EP

5

(
1ffiffiffiffiffiffiffi
2l

1

p ,2
1ffiffiffiffiffiffiffi
2l

2

p , 0, 0, . . .

)
, (8)

where l1 and l2 are the leading two SST eigenvalues.

The CP and EP final norm kernels (N), which define the

direction of growth, are defined as

N
CP

5 nT
CPnCP

1 �I

N
EP

5nT
EPnEP

1 �I , (9)

where �I is the identity matrix times some arbitrary small

number (�5 1029) that is necessary for numerical sta-

bility (Tziperman et al. 2008). Using the CP and EP

norms above, we estimate the optimal initial conditions

p that maximize growth m in the direction of the chosen

norm N over a finite time period t by solving the gen-

eralized eigenvalue problem:

GT
tNG

t
p2m(t)p5 0. (10)

Figures 1a and 1c show the optimal initial conditions

that maximize either CP or EP growth, respectively,

over a 6-month time period. Results are similar for

t 5 3 months and t 5 9 months (not shown). The final

CP and EP ENSO states are shown in Figs. 1b and 1d,

respectively. Optimal initial and associated final condi-

tions found here are very similar to those previously

calculated in Vimont et al. (2014); we show the struc-

tures here since the linear inverse model in this study is

constructed with different SST and thermocline datasets.

The optimal initial conditions maximizing CP growth

show a spatial SST structure representative of the PMM,

along with an increased zonal thermocline gradient with

deep thermocline anomalies in the western Pacific and

shoaled thermocline anomalies in the eastern Pacific. The

EP optimal initial conditions contain a zonal SST gradi-

ent containing positive SST anomalies located in the far

eastern Pacific and negative SST anomalies in thewestern

and central Pacific. The EP optimal conditions also sug-

gest that a deepened thermocline across much of the

central equatorial Pacific maximizes EP growth. The

optimal structures are insensitive to the number of EOFs

retained in the state vector, which is consistent with the

results from Vimont et al. (2014).

The temporal evolution patterns of the L2 (i.e., the

Euclidean norm), CP, and EP optimal initial conditions

(red lines) together with SST PC1 and the CP and EP

indices (black lines) are shown in Figs. 2a–c. The time

series of the optimal initial conditions are calculated by

projecting the state vector x (7) onto the L2, CP, or EP

optimal initial structures. As expected, the L2, CP, and

EP optimal initial time series lead the SST PC1, CP in-

dex, and EP index, respectively. The maximum lagged

correlation for both CP and EP occurs when the optimal

leads the index by 2 months.

3. Noise forcing of CP/EP optimals

This section describes the methods used to estimate

the noise forcing that drives the tropical Pacific toward a

15 NOVEMBER 2018 THOMAS ET AL . 9129



particular state, especially the optimal initial condi-

tions for CP or EP ENSO events. We then diagnose

specific physical mechanisms that contribute to that

noise forcing.

a. Stochastic forcing

The observed stochastic forcing, or noise forcing, of

the system [see (2)] can be estimated using a centered-

difference approximation to (2) following the method-

ology described in Penland and Hartten (2014):

j(t)’
[x(t1Dt)2 x(t2Dt)]

2Dt
2Lx , (11)

where x is now the finely resolved (in time) state vector

based on pentad data and Lx is the deterministic evo-

lution. Note here that the right-hand side of (11) can be

interpreted as a ‘‘dynamical filter’’ that removes the

deterministic tendency (Lx) from the actual tendency.

The result (left-hand side) is an estimate of the broad-

band forcing that the slow dynamics will see as white at

the frequencies of interest to El Niño (see Figs. 2h,i).

The resulting multivariate time series j(t) empirically

estimates the nondeterministic component of the sys-

tem’s tendency (i.e., the noise forcing) and not the de-

terministic evolution of ENSO itself. This is critical to

ensuring that the resulting noise patterns are not simply

aliasing the deterministic component of ENSO’s evo-

lution. In other words, because (i) the linear inverse

model largely reproduces both seasonal and year-to-

year variations of tropical Indo-Pacific SST forecast skill

from fully nonlinear models (see Figs. 2 and 3 in

Newman and Sardeshmukh 2017) and (ii) the linear

inverse model describes the deterministic evolution of

FIG. 2. The temporal evolution of (a) SST PC1 (black) and L2 optimal initial conditions (red), (b) CP index

(black) and CP optimal initial conditions (red), and (c) EP index (black) and EP optimal initial conditions (red).

The noise forcing time series associated with 6-month (d) CP and (e) EP optimal initial conditions are shown. The

CP and EP noise forcing time series in (d) and (e) are calculated as the projection of j(t) [see (11)] onto the CP or

EP optimal initial conditions (Fig. 1). (f) The seasonal variance of the total noise forcing j(t) is shown as is (g) the

seasonal variance of the noise forcing associated with the L2 (blue), CP (red), and EP (black) optimals. The var-

iance is smoothed with successive five- and seven-pentad running means. The power spectra (solid black) of the

unfiltered (h) CP and (i) EP noise forcing time series. The solid red lines show the white noise null hypothesis, while

the dashed red lines show the 95% confidence interval.
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the system, we can use (11) to filter out the deterministic

component, thereby retaining the nondeterministic con-

tribution from the noise.

Note that although we have calculated L frommonthly

(i.e., coarse grained) data, in (11) we estimate the noise

from pentad (i.e., more finely resolved) data. The reason

for this distinction is described in the cautionary note

from Penland and Hartten (2014; see the supplemental

material therein) on the centered difference approxima-

tion to the continuous Stratonovich system in (2). In a

Stratonovich system the contemporaneous correlation

between the noise and the system state is nonzero, and

the centered-difference equation approximation in (11) is

only valid in the limit as Dt goes to zero. In this case, the

approximation is justified if the time scale over which (11)

is evaluated is short compared to that of the deterministic

evolution of the system. Hence, we evaluate (11) using

pentad data. Additionally, we have confirmed that the

noise covariance matrix estimated from (11) is consistent

with the noise covariance matrix calculated using the

fluctuation–dissipation relationship with stationary sta-

tistics (Penland and Sardeshmukh 1995; for further de-

tails see section S2a in the online supplemental material).

The finely resolved state vector x is defined as the

projection of the pentad SST and Z20 anomalies onto

the leading nine SST and three Z20 EOFs that were

identified frommonthly data (see section 2a). As before,

these time series (nine SST and three Z20) of the

finely resolved state vector x are normalized by the

square root of the total variance of each variable’s

monthly anomalies. Finally, the pentad-evolving mul-

tivariate noise is estimated as a residual from (11), re-

sulting in a multivariate dataset with 12 degrees of

freedom (nine SST and three Z20) and 2555 pentads

(73 3 35 yr of data).

b. Noise structures associated with CP and EP
optimals

The noise time series associated with forcing any spec-

ified optimal initial conditions is estimated by projecting

the total noise forcing j(t) in (11) onto that optimal’s

spatial structure. Figures 2d and 2e show the resulting time

series of noise forcing associated with the CP and EP

6-month optimals, respectively. A Kolmogorov–Smirnov

test applied to both noise time series shows their distri-

butions are not significantly non-Gaussian (section S2c

in the supplemental material). The linear inverse model

assumes that relative to its deterministic time scales, the

noise forcing will be spectrally white, which is confirmed

by the spectral analysis of the raw noise in Figs. 2h and 2i.

Further details regarding the evaluation of the spectral

behavior of the noise are provided in the supplemental

material (section S2b). The decrease in power at high

frequencies is expected due to the centered-differencing

method used to estimate the noise. Due to this character-

istic, we apply a five-pentad running mean to the SST and

Z20data prior to calculating thenoise time series to remove

the insignificant high-frequency variance in the noise.

Several previous studies also show the low-frequency part

of the noise spectrum is more effective in forcing ENSO

(Roulston and Neelin 2000; Newman et al. 2009; Levine

and Jin 2010; Lopez et al. 2013).

Figure 2f shows the seasonal variation of the total

noise forcing amplitude, which reaches a maximum

(minimum) duringMarch (August). Figure 2g shows the

seasonal variation of the noise amplitudes associated

with the L2 (blue), CP (red), and EP (black) optimals.

The variance was smoothed with successive five- and

seven-pentad centered running means. CP noise ampli-

tudes have the weakest seasonality but are highest dur-

ing boreal winter (DJF). The EP noise variance, on the

other hand, contains much stronger seasonality and is

highest during boreal spring (MAM) and lowest during

fall (SON). Unlike Penland (1996), there is no semi-

annual seasonal cycle in the noise variance, likely be-

cause of the inclusion of subsurface data in this analysis.

To identify physical mechanisms within the stochastic

forcing contributing to CP and EP optimal initial condi-

tion development, we regress the global pentad-averaged

anomalies onto the stochastic forcing time series in

Figs. 2d and 2e. The resulting regression maps, shown

for each season in Figs. 3 and 4, may be interpreted as

variability in a particular field that covaries with the

noise forcing of a given set of optimal initial conditions

and are robust to modifications of the number of EOFs

retained in the state vector. While this technique does

not necessarily identify specific mechanisms that

guarantee ENSO growth, it does identify atmospheric

patterns that covary with the noise forcing of the CP

and EP optimals. These patterns are consistent with a

number of mechanisms previously proposed in the lit-

erature, as discussed below. See the supplemental ma-

terial for full regression maps and a discussion of the

statistical significance.

Figure 3 shows sea level pressure (SLP), 850-mb wind,

and outgoing longwave radiation (OLR) anomalies re-

gressed on the noise forcing time series associated with

the 6-month CP (left column) and EP (right column)

optimal initial conditions. Figure 4 shows the corre-

sponding regression patterns of ocean–atmosphere ther-

mal flux (OAFLUX, defined as sensible heat flux1 latent

heat flux; positive upward) and surface wind stress

anomalies. Note that the maps in Figs. 3 and 4 contain a

large range of variabilities, which is not surprising

considering that ‘‘noise forcing’’ could include a variety

of phenomena.
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FIG. 3. Atmospheric noise structures associated with (left) CP and (right) EP optimal

initial conditions. Shown are the seasonal regression coefficients between sea level pressure

(SLP; hPa; contours), 850-mb wind (m s21; vectors), and OLR (Wm22; shading), as well as

the noise forcing time series of the CP or EP optimal initial conditions. The first row shows

the regression coefficients of boreal winter (DJF). The second through fourth rows show the

regression coefficients for the boreal spring (MAM), summer (JJA), and fall (SON)months,

respectively. Positive (negative) SLP is indicated with red (blue) contours where the contour

interval is every 0.5 hPa. The zero contour has been omitted. OLR is defined as positive

upward.Wind vectors are only shownwhere the geometric sumof the correlation coefficients

is equal to or greater than 0.1.
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FIG. 4. Noise-forced oceanic structures associated with (left) CP and (right) EP op-

timal initial conditions. Shown are the seasonal regression coefficients between the

surface wind stress (Nm22; vectors) and ocean–atmosphere flux (OAFLUX; Wm22;

shading) and the noise forcing time series of the CP or EP optimal initial conditions. The

first row shows the regression coefficients of boreal winter (DJF). The second through

fourth rows show the regression coefficients for the boreal spring (MAM), summer

(JJA), and fall (SON) months, respectively. OAFLUX is defined as positive upward.

Wind stress vectors only shownwhere the geometric sumof the correlation coefficients is

equal to or greater than 0.1.
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The CP SLP structures (Fig. 3, left) show typically

higher noise amplitudes during winter and spring in each

hemisphere. In the Northern Hemisphere, the CP SLP

forcing structures during boreal fall (SON), winter

(DJF), and spring (MAM) are similar to those of the

North Pacific Oscillation (NPO). During these seasons,

the OAFLUX (Fig. 4, left) shows a flux into the ocean

with a pattern corresponding to the PMM. These results

support previous studies that show the NPO and PMM

are related to initiating CP ENSO events (Yu and Kim

2011; Kim et al. 2012b). In the Southern Hemisphere,

subtropical SLP anomalies contribute to CP noise

forcing throughout the year, associated with only weak

downward heat flux anomalies.

For forcing the EP optimal, on the other hand, the

Northern Hemisphere SLP noise is much less important

except perhaps during winter, whereas the Southern

Hemisphere SLP noise appears important throughout

the year (Fig. 3, right). In particular, a dipolar SLP

structure is evident during austral fall (MAM) and

spring (SON) that resembles the ‘‘South Pacific Oscil-

lation,’’ which has been identified as an EP ENSO pre-

cursor by You and Furtado (2017). Similar SLP patterns

are also found in Penland and Matrosova (2008). The

850-mb wind (Fig. 3, right) and surface wind stress

(Fig. 4, right) patterns show positive zonal wind anom-

alies in the equatorial Pacific throughout the year,

although there are slight seasonal differences in the lo-

cation and magnitude. The zonal winds lie south of the

equator in the western tropical Pacific during DJF,

centered close to the equator duringMAMand JJA, and

north of the equator in the western tropical Pacific

during SON. The wind anomalies are weakest dur-

ing boreal summer (JJA). Since the EP noise variance

peaks in boreal spring (MAM; Fig. 2f), the spring-

time noise structures are of particular interest. The

springtime (MAM) stochastic forcing of EP optimals

shows strong low-level zonal wind anomalies in the

western and central tropical Pacific (Fig. 3, right).

Interestingly, the ocean–atmosphere flux shows a flux

into the ocean in the Southern Hemisphere off the

South American coast from DJF through JJA (Fig. 4,

right), suggestive of the South Pacific meridional

mode (SPMM).

4. Role of noise forcing versus deterministic
dynamics during past ENSO events

In the previous section, we identified noise structures

related to the excitation of an optimal set of initial con-

ditions, which will lead tomaximum deterministic growth

[first term on the right-hand side of (3)] over some time

period. In this section, over the lifetime of different

ENSO events, we compare the deterministic evolution

from initial conditions to the nondeterministic evolution

driven by noise. We note that the nondeterministic

evolution of the system is controlled by the second term

in (3). Chang et al. (2004) show that the forcing structure

optimizing error growth over a finite time period (time

0 to t) is the leading eigenvector of B(t), where

B(t)5

ðt
0

eL*(t2s)eL(t2s)ds. (12)

It is worth noting the relationship between the initial

optimals investigated in section 3 and the noise structures

that dominate the nondeterministic trajectory. At a given

time t0 after the forecast initialization, but before a

forecast target end time t, the relationship between the

initial optimals and the optimal noise structure can be

illuminated by writing (12) as an infinite sum:

B(t)5 lim
n/‘

�
�
n

k51

eL*(t2kds)eL(t2kds)ds

�
(13)

(where ds5 t/n). Note that at time t0 the argument in-

side the sum is simply GT
t2t0Gt2t0 . Hence, the structure

that optimally perturbs a system away from its trajectory

at time t0 between 0 and t is simply the optimal set of

initial conditions at time t2 t0. That is, at some time t0

after the forecast initialization, the noise structure that

optimally ruins a forecast is that which experiences the

most transient growth over the remaining forecast time

(t2 t0). This argument can easily be generalized to in-

vestigate growth toward or away from specific norms,

and is used to investigate the role of noise forcing in the

generation of ENSO events with specific CP or EP

characteristics herein. We use the 6-month optimal ini-

tial structure for analysis herein; results are not sensitive

to the choice of optimization time.

To highlight how the role of the noise forcing can vary

for any given event, we select two strong EP events

(1982/83 and 1997/98), one strong CP event (2009/10),

the recent 2015/16 event (which displays both CP and

EP characteristics), and the ‘‘failed’’ 2014 event. The

relative role of (i) deterministic evolution from initial

conditions versus (ii) stochastic forcing is evaluated by

integrating the model forward in time with either (i) the

deterministic component only [first term on the right-

hand side of (3); noise set to zero] or (ii) the stochastic

noise component only [second term on the right-hand

side of (3); initial state set to zero]. Comparing the ob-

served SST anomalies with (i) the SST predicted by the

deterministic component or (ii) the noise-forced SST

evolution allows us to estimate the relative importance

of the noise forcing and deterministic dynamics for any
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given event. Note that since the noise forcing in this study

is calculated as a residual, by definition, it contains in-

fluences from both the stochastic noise forcing as well as

nonlinearities not captured by the linear approximation

to nonlinear dynamics. The importance of the timing for

the initial conditions and noise forcing is inferred through

initializing the linear inverse model (using the two terms

above) from different months, determined as the pentad

containing the first day of the respective month.

LIM also allows us to determine how CP and EP noise

forcing impacted each event. Similar to the method

described above, we integrate the linear inverse model

forward in time using staggered initial conditions.

However, by systematically removing the noise projec-

ting onto either the CP or EP optimal, and comparing

the resulting SST forecast to the observed SST anoma-

lies, we can determine the importance of CP or EP noise

forcing in generating the observed ENSO characteris-

tics. We then quantify how well the LIM without either

the CP or EP noise forcing reproduces the observed SST

by calculating the root-mean-square error (RMSE) of

the CP index and EP index as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(X
LIM

2X
Obs

)2

n

vuuut
, (14)

whereXLIM is the CP or EP index in (1) for the LIM SST

forecast without CP or EP noise forcing, respectively;

XObs is the CP or EP index of the observed SST; and

n is the number of pentads. The RMSE is calculated

between the initialization (the first pentad of eachmonth)

through the last pentad of the February following the

peak of the event. We use both CP and EP indices rather

than a single ENSO index (such as the Niño-3.4 index) in
order to capture the importance of the CP and EP noise

forcing in generating strong EP and CP spatial charac-

teristics. It is important to note, however, that any given

ENSO event may be influenced by stochastic forcing that

is characterized by a combination, or complete lack of,

CP and EP forcing.

a. 1982/83 El Niño event

We first analyze the tropical Pacific SST anomalies

from the 1982/83 ENSO event. TheHovmöller diagrams

in Fig. 5 show the observed equatorial SST anomalies of

the event (top left) and various LIM simulations of the

SST anomalies. The remainder of the top row shows

the full LIM simulation [calculated using both terms on

the right-hand side of (3)], whichmatch the observations

well no matter when the model is initialized, as expected

[this also serves as a check on the centered differencing

in (11)]. Themiddle row shows the SST anomalies due to

the deterministic, or predictable, component of the LIM

[first term on the right-hand side of (3)] while the bottom

row shows the unpredictable, or noise forced, compo-

nent, of the SST anomalies [second term on the right-

hand side of (3)], as explained above. By definition, the

dynamical SST anomalies plus the noise-forced SST

anomalies equal the SST anomalies produced by the full

LIM (i.e., top row 5 middle row 1 bottom row). The

label at the very top of each column indicates the month

of initialization; the model is initialized with observa-

tions from the first pentad of the month. The timing of

the initialization is indicated in the Hovmöller diagrams

with the horizontal black lines, and time increases along

the y axis and longitude (8E) are indicated along the

x axis.

Figure 5 indicates that deterministic dynamics do a

poor job at reproducing the observed SST anomalies for

the 1982/83 ENSO event prior to the October initial

conditions; instead, noise forcing dominates. Only when

the model is initialized in October or later does the dy-

namical forecast reproduce the peak amplitude of the

1982/83 ENSO event. This suggests the state of the

system in October, once the ENSO event has begun, is

sufficient for generating a skillful dynamical forecast of

the ENSO event, while the state of the tropical Pacific

prior to October was insufficient to generate a strong

ENSO event without the influence of stochastic forcing.

More specifically, these results suggest the noise forcing

that occurs after the August initialization but prior to

the October initialization is critical for producing the

October conditions that generate the large-amplitude

SST anomalies at the peak of the 1982/83 ENSO event.

Furthermore, once the deterministic dynamics begin to

dominate the ENSOdevelopment in boreal fall, they also

dominate the development of the La Niña event that

occurs during the following boreal winter. This shows that

the 1983/84 La Niña was a result of deterministic evolu-

tion from El Niño conditions in late 1982.

To determine whether the CP or EP noise forcing is

more important for the generation of the 1982/83 event, we

repeat the LIM simulations, except that we systematically

remove the CP or EP noise forcing from the model and

calculate the RMSE of the CP and EP index of the

resulting SST ‘‘forecast.’’ These results are summarized in

the RMSE calculations for the 1982/83 event shown in

Fig. 6a. The red plus (1) signs show the CP index RMSE

of the LIM runwithoutCP noise forcing, while the black

crisscrosses (3) represent the EP index RMSE of the

LIM run without EP noise forcing. The large EP index

errors suggest EP noise forcing is critical to the devel-

opment of the strong EP characteristics observed during

the 1982/83 event while CP noise forcing is much less

influential (indicated by small RMSE values for the CP
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index). These results also show the noise forcing is

particularly important during boreal spring and sum-

mer. However, the magnitude of the EP errors de-

creases dramatically when the LIM is initialized in late

summer/fall, which supports the previous conclusions

that the state of the system during fall is sufficient to

develop into an ENSO event through deterministic dy-

namics alone, while the noise forcing during boreal spring

and summer is necessary to generate those conditions.

Finally, we analyze the structures of noise forcing during

the key months identified above for the development of

the 1982/83EPElNiño.However, at any given time, a field

will contain contributions from the nondeterministic noise,

and fromdeterministic evolution (the coupled evolution of

ENSO). As such, the deterministic component needs to be

removed. Noise structures in fields that are not included in

the state vector [ynoise(x, y, t)] are identified usingmultiple

linear regression of the pentad NCEP–NCAR reanalysis

FIG. 5. Hovmöller diagrams of equatorial Pacific (1208–2858E) SST (averaged from 28S to 28N) for the 1982/83 ENSO event. Time

increases upward along the y axis and longitude (8E) is indicated along the x axis. The observed SST anomalies are shown at the top left.

The remainder of the top row shows the SST anomalies predicted from the full LIM containing both deterministic dynamics and stochastic

forcing [calculated using both terms on the right-hand side of (3)]. (middle) The portion of SST anomalies predicted by the deterministic

dynamical component [first term on the right-hand side of (3)]. (bottom) The component of the SST anomalies driven by the stochastic

forcing term (second term on right-hand side of (3)]. The columns represent initializations every 2 months between February 1982 and

February 1983. The LIM is initialized using observations during the first pentad of the indicatedmonth. Themonth of initialization is listed

at the very top of each column and is indicated by the horizontal black lines in the diagrams.
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data (from 1982–2016) onto the noise time series [j(t) as

calculated in (11)]:

ynoise(x, y, t)5 �
N

i51

a
i
(x, y)j

i
(t) , (15)

where ai(x, y) are the multiple regression coefficients.

For each spatial point in a given field, we use multiple

linear regression to predict the full (1982–2016) time

evolution of the pentad data. The resulting dataset con-

tains variability that covaries with the nondeterministic

component of the system: the noise. We then analyze the

monthly mean noise patterns for the specific months of

interest during the development of each ENSO event.

Figure 7 shows the monthly mean, uncoupled SLP (con-

tours), 850-mb wind (vectors), and OAFLUX (shad-

ing) anomalies for July–October 1982. Since the October

1982 initial conditions are sufficient for generating

ENSOgrowth through deterministic dynamics alone, we

primarily focus on the stochastic forcing patterns in

the months prior to October. The July, August, and

September noise patterns show strong positive zonal

wind anomalies located in the western equatorial Pacific.

These zonal wind anomalies extend across much of the

equatorial Pacific during September 1982. These westerly

wind structures also match the JJA and SON EP noise

forcing patterns in Fig. 3.

b. 1997/98 El Niño event

We next analyze the atmospheric noise patterns that

occur during the development of the 1997/98 EP El

Niño. Figure 8 shows the sameLIM simulations as Fig. 4,

but for the 1997/98 El Niño. Unlike the 1982/83 EP

event, which appears to have been largely influenced by

noise forcing in late boreal summer, the Hovmöller di-
agrams in Fig. 8 show that the deterministic dynam-

ics of the LIM reproduce the observed evolution of

the 1997/98 El Niño more accurately from much ear-

lier initializations. This agrees with previous studies

that also show a relatively long predictability of the

FIG. 6. RMSEs calculated for CP (red1 signs) and EP (black3 symbols) indices for the LIM forecasts containing no CP or EP noise

forcing, respectively. The RMSE is calculated between the initialization month (indicated along the x axis) through the end of the

February following the peak of the event for the (a) 1982/83, (b) 1997/98, (c) 2009/10, and (d) 2015 El Niño events. (e) The RMSE values

for the failed 2014 event.
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1997/98 event (Newman and Sardeshmukh 2017). Our

results show this is especially true when the LIM is

initialized in June or later. Indeed, beyond June the

noise forcing has little to no effect on the amplitude of

the equatorial SST anomalies during the ensuing El

Niño event, though they do contribute to a more rapid

decay of the event and transition toward the 1998/99

La Niña.
Next, we determine if the noise forcing of the 1997/98

event is dominated by CP or EP noise. These results are

shown in Fig. 6b, which shows the RMSE of the CP and

EP index from the LIM forecasts without CP or EP

noise forcing, respectively. Again, the RMSE is calcu-

lated from the model initialization date through the end

of the February following the peak of the warming. The

LIM without CP noise forcing reproduces the observed

event well, as indicated by the small magnitudes of the

CP index RMSE (Fig. 6b; red plus signs), indicating CP

noise forcing is not important in the development of the

1997/98 event. The EP noise forcing, on the other hand,

appears to be much more important to the development

of the event, especially early in the year. The large

RMSE of the EP index for the LIM forecast without EP

noise forcing (Fig. 6b; black 3s) through May 1997

shows the importance of EP noise forcing early in the

year; however, the magnitude of the errors decreases

drastically beginning in early boreal summer. The sharp

decrease in RMSE that occurs after May 1997 indicates

FIG. 7. Monthly mean noise structures for July–October 1982. SLP anomalies (hPa; contours), 850-mb wind

anomalies (m s21; vectors), and OAFLUX anomalies (Wm22; shading) are shown. Positive (negative) SLP

anomalies are indicated with red (blue) contours where the contour interval is every 1 hPa. The zero contour has

been omitted. OAFLUX fluxes are defined as positive upward.
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the EP noise during boreal spring is important for gener-

ating a state where deterministic dynamics dominate the

event development.

Figure 9 shows the monthly mean uncoupled SLP,

850-mb wind, and OAFLUX noise patterns associated

with the development of the 1997/98 event, focusing on

March–June 1997 in accord with the RMSE results

above. The noise forcing shows strong westerly wind

anomalies located along the equator in the central Pa-

cific, during March and April of 1997, which match the

boreal spring (MAM) EP noise forcing structures in

Fig. 3. These results indicate that EP noise forcing,

particularly the positive zonal wind anomalies located

in the equatorial Pacific early in the year, was important

for the observed magnitude and strong eastern Pacific

characteristics of the 1997/98 ENSOevent. In contrast to

the 1982/83 EP El Niño, this noise forcing occurred

much earlier, and hence the 1997/98 EP El Niño was

predictable with a longer lead time.

c. 2009/10 El Niño event

Figure 10 shows the role of deterministic dynamics

versus noise forcing though Hovmöller diagrams for the

2009/10 CP ENSO event, as before. For any lead time

the deterministic dynamics do a poor job at reproducing

the observed warming while the noise forcing domi-

nates the development of the event. This shows the

importance of noise forcing to the development of the

FIG. 8. As in Fig. 5, but for the 1997/98 EP El Niño event.
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2009/10 CP event and its low predictability skill. Addi-

tionally, these results show, unlike the deterministic de-

velopment of the La Niña events that occur after the

strong EP events described above, the LaNiña event that
peaks during the boreal winter of 2010/11 is primarily

driven by noise forcing, even after the peak of the 2009/10

El Niño.
To identify the relative importance of EP and CP

noise forcing to the 2009/10 CP El Niño and determine

during which months the noise forcing is most impor-

tant, we calculate the CP and EP index RMSEs of the

LIM forecasts run without CP and EP noise forcing,

respectively (Fig. 6c). The low RMSE values of the EP

index (Fig. 6c; black 3s) indicate the LIM run without

EP forcing has very little influence on the resulting SST

patterns, indicating the 2010 CP event was not highly

influenced by EP noise forcing. However, the LIM is

unable to accurately reproduce the observed event when

the CP noise forcing is removed from the model, espe-

cially when the model is initialized prior to June 2009.

The monthly mean structures of the uncoupled SLP,

850-mb wind, and OAFLUX noise that occurs between

March and June of 2009 are shown in Fig. 11. The SLP

patterns show slight NPO-like SLP anomalies located in

the north-central Pacific, which match the CP noise

forcing structures seen in Fig. 3. The dipole SLP structure

associatedwith theNPO ismost apparent duringApril and

May; however, the negative SLP anomaly located in the

central North Pacific around 408N is evident in all four

months. The 850-mb wind structures show extratropical

wind anomalies associated with the SLP patterns, as ex-

pected. March and April also show strong positive zonal

FIG. 9. As in Fig. 7, but for March–June 1997.
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wind anomalies located along the equator in the central

Pacific. These zonal wind patterns closely match the CP

noise forcing structures shown in Fig. 3. Finally, the

OAFLUX patterns include downward heat flux anom-

alies in the subtropics, which project strongly onto the

PMM spatial structure. These OAFLUX patterns also

agree with the CP noise forcing structures in Fig. 3.

d. 2015/16 El Niño event

Figure 12 shows the same analysis applied to the

strong 2015/16 El Niño. Results show that deterministic

dynamics simulated the evolution of the 2015/16 event

well with very long lead times. More specifically, these

results show that the deterministic dynamics predict a

large El Niño event in early boreal spring, and capture

the full amplitude of the ensuing event in late boreal

summer (August). The noise forcing appears to be es-

pecially important during February 2015, and again in

July andAugust 2015, in generating the large-magnitude

ENSO event that was observed.

Figure 6d shows the RMSE results to quantify the

importance of CP noise forcing versus EP noise forcing to

the 2015/16 CP event. These results show small RMSEs

for both the CP and EP indices, except during February

and March of 2015, which contain relatively large EP

errors. The monthly composite SLP, 850-mb wind, and

OAFLUX noise forcing structures for February–May

2015 are shown in Fig. 13. The most striking noise forc-

ing features are the large zonal wind anomalies that oc-

cur in the western and central equatorial Pacific during

FIG. 10. As in Fig. 5, but for the 2009/10 CP El Niño event.
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February and March. These zonal wind anomalies

strongly resemble the MAM EP noise forcing patterns

identified in Fig. 3 (right column). The Southern Hemi-

sphere SLP, zonal wind, and OAFLUX anomalies in

March all strongly resemble the South Pacific Oscillation

ofYou andFurtado (2017), which is also evident in Figs. 3

and 4 (right columns). The monthly composites (Fig. 13)

also show noise patterns that project onto the previously

identified CP noise forcing patterns in Figs. 3 and 4. For

example, the OAFLUX during February contains a flux

into the ocean that resembles the PMM pattern seen in

Fig. 4 (left column).

These results show the 2015 ENSO event was largely

predictable in nature, due to the dominant role the de-

terministic dynamics played in the development. Further-

more, this event highlights the diversity of the noise forcing

for any given event. The 2015 event is difficult to classify as

either a CP event or an EP event as there is a significant

projection onto both CP and EP patterns (refer to the CP

and EP index time series in Figs. 2b and 2c, respectively).

This blend of CP and EP characteristics is apparent in the

influence of both CP and EP noise forcing structures.

e. 2014 nonevent

Finally, we analyze 2014 to see if the large-magnitude

event that many expected to occur at the end of 2014 was

‘‘ruined’’ by the role of the noise forcing. Most note-

worthy, our results suggest no large-magnitude event

should have been expected during 2014. The determin-

istic dynamics, or the predicable component of the LIM,

do not forecast an ENSO event occurring at the end of

the 2014 calendar year, no matter when the model is

FIG. 11. As in Fig. 7, but for March–June 2009.
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initialized (Fig. 14). This suggests the state of the tropical

Pacific during 2014 never contained initial conditions

ideal for producing an ENSO event. Recall that forecasts

in Fig. 14 are initialized 12months before those in Fig. 12,

so results are not directly comparable. Although the

monthly noise composites (Fig. 15) do show easterly wind

burst activity during June and July of 2014, which stalled

the development of a 2014ElNiño event according toHu

and Fedorov (2016, 2018), the lack of an ENSO event

generated by the deterministic forecast using June initial

conditions suggests the WWB noise forcing in February

and March was insufficient to generate a state that could

develop into an event at the end of the year. Further-

more, our results support the conclusions of Chiodi and

Harrison (2017) that also suggest insufficient WWB ac-

tivity to produce an ENSO event.

5. Conclusions and discussion

This study investigates the role of initial conditions

and noise in producing ENSO events with eastern

Pacific (EP) or central Pacific (CP) characteristics.

A forecast perspective is applied using linear inverse

modeling to separate the deterministic evolution of the

tropical ocean–atmosphere system from the noise-

forced nondeterministic evolution. Within this forecast

framework, the noise plays two roles: it can enhance

deterministic growth by generating initial conditions

FIG. 12. As in Fig. 5, but for the 2015 El Niño event.
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with large projection onto optimal initial states or it can

lead to nondeterministic growth (forecast error) by

pushing the system away from the deterministic trajec-

tory. While many studies have used LIM to identify

optimal initial conditions for EP and CP events, the

noise forcing capable of exciting those optimal struc-

tures has not been previously identified. This study

uses a LIM framework to identify specific noise struc-

tures capable of exciting CP and EP optimal initial

conditions and then analyzes the role of noise forcing

during the 1982/83 and 1997/98 EP ENSO events, the

2009/10 CP ENSO event, the 2015/16 event, and the

conditions during 2014.

We first use LIM to calculate the linear dynamics of

the tropical Pacific and identify the optimal initial con-

ditions that maximize growth toward EP and CP events.

We then apply a centered-differencingmethod (Penland

and Hartten 2014) to calculate the noise forcing of the

tropical Pacific. By projecting the noise forcing onto the

CP and EP optimal initial conditions, we obtain time

series of how the noise pushes the system toward CP or

EP optimal initial conditions. These time series are then

used to investigate other fields to better understand the

structures within the noise forcing related to generat-

ing CP and EP growth. Prior studies show the impor-

tance of extratropical atmospheric forcing and the

seasonal footprinting mechanism in the development of

CP ENSO events (Yu and Kim 2011); the PMM struc-

ture of the CP optimal initial conditions found in this

study as well as the corresponding NPO structure of the

boreal winter stochastic forcing provide direct empirical

evidence in support of these findings. Further, the EP

FIG. 13. As in Fig. 7, but for February–May 2015.
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noise forcing identifies equatorial westerly wind activity

near 1508E and the South Pacific Oscillation (You and

Furtado 2017) as contributors to optimal EP initial

conditions.

The LIM framework is then used to investigate the

relative roles of initial conditions versus stochastic

forcing in the evolution of specific ENSO events. The

LIM is integrated forward from specific times along (i) a

deterministic trajectory in which the initial conditions

are integrated forward with zero noise forcing and (ii) a

nondeterministic trajectory in which the initial condi-

tions are set to zero and the LIM is integrated forward

using only the estimated noise forcing. The technique

accurately captures diversity in the timing and spatial

structure of noise forcing although the noise forcing is

convolved with the estimated deterministic dynamics.

Diversity in the timing of the initial conditions and

noise forcing is especially evident when comparing the

1982/83 and 1997/98 EP El Niño events. Results show

that positive zonal wind anomalies play a significant role

during the development of both the 1982/83 and 1997/98

EP ENSO events, although the two events evolve under

very different conditions. Similar to the conclusions of

Takahashi and DeWitte (2016), the large amplitude of

the 1982/83 event was related to the strong equatorial

wind anomalies in late boreal summer (August and

September). We also show that the state of the tropical

Pacific prior to October 1982 was not conducive to

FIG. 14. As in Fig. 5, but for the failed 2014 event.
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producing a large event via the deterministic trajectory.

It is possible the limited observations may play a role in

the low predictability of the 1982/83 event.

In contrast, the deterministic trajectory for the 1997/

98 El Niño was predictable using observed initial con-

ditions as early as late winter 1997 (February). Large

equatorial westerly wind anomalies in March and April

1997 established a tropical Pacific state that was suffi-

cient for producing a large-amplitude El Niño event by

late 1997. Hong et al. (2014) find extreme-magnitude El

Niño events (i.e., 1982/83 and 1997/98) are preceded by

enhanced low-level westerly wind anomalies in the west-

central Pacific. Furthermore, Harrison (1984) shows a

southerly jet prior to the occurrence of the sustained

westerly wind anomalies in 1982 may also play a role in

the development of the large-magnitude event observed.

Beyond May 1997, noise forcing played very small role in

the evolution of the 1997/98 El Niño event. Furthermore,

the La Niña conditions following the two extreme El Niño
events of 1982/83 and 1997/98 are shown to largely result

from the dynamical evolution of the system from their

preceding El Niño events.

Analysis of the 2009/10 CP ENSO event highlights

the role of the stochastic forcing in producing some

ENSO events. The 2009/10 event was largely noise

driven throughout the entirety of the event. Only

during the late boreal fall of 2009 did the deterministic

trajectory capture the amplitude of the event. CP noise

forcing during April and May 2009 was especially im-

portant for the development of CP characteristics for

the resulting event. Further, unlike the 1983/84 and

1998/99 La Niña conditions, the 2010/11 La Niña event

FIG. 15. As in Fig. 7, but for February, March, June, and July 2014. Only the months with large-magnitude noise

forcing structures are shown.
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was largely unpredictable while the 2009/10 El Niño
event itself was still developing. However, these re-

sults show that the 2010 La Niña event contained

some deterministic predictability once the El Niño
event reached its peak magnitude, as suggested by Kim

et al. (2011).

Not all events evolve along CP or EP trajectories, as

evidenced by the 2015/16 event. Strong EP forcing (es-

pecially equatorial westerly winds) in February and

March 2015 was especially important for setting the

stage for the ensuing event. Analysis shows that the

highly anticipated 2014 event, which never materialized,

was relatively well predicted by the deterministic tra-

jectory throughout 2014.

Our method of estimating noise forcing allows the

statistics of the system to determine the assumed dy-

namics (the LIM), so that we can directly estimate the

noise as a residual. An alternative approach for de-

termining noise forcing of ENSO would be to first as-

sume a theoretical model for ENSO variability, and

then calculate the additive and multiplicative compo-

nents of the noise forcing using a predetermined re-

lationship between the system state and the noise,

such as by using linear regression to calculate coeffi-

cients (Levine and Jin 2017; Levine et al. 2016). Our

method includes both the additive component and

possibly some contribution from the multiplicative

component of the noise [see Martínez-Villalobos et al.

(2018) and Sardeshmukh and Sura (2009) for further

description of the multiplicative noise contribution to

the dynamical operator and noise amplitude], but it

does not distinguish between these components. We

note that Levine et al. (2016) find modest contribu-

tions of the multiplicative noise component only during

extreme ENSO events, which should be taken into

consideration in interpreting the results in section 4.

The technique used in this study has some other lim-

itations. For example, the linear approximation in LIM

assumes that the system’s nonlinear dynamics have

much shorter memory (are more rapidly decorrelating)

than the linear dynamics. Where and when this as-

sumption is not valid, the LIM will not capture all the

nonlinear dynamics properly. [Of course, many CMIP5

models also may not correctly represent nonlinear dy-

namics, as shown for example in Karamperidou et al.

(2017).] LIM is known to have reduced skill in the far

eastern Pacific (Newman and Sardeshmukh 2017),

which could well be due to unresolved nonlinearity, as

well as to strong seasonality that is not included in the

linear operator. The relatively short record used to train

LIM could allow some deterministic and noise effects to

be convolved, especially given the reliance on a trun-

cated EOF space to limit the dimensionality of the

predictable dynamics. Still, tests on the validity of LIM

in the tropical Pacific herein and in previous studies

show LIM performs well in the tropical Pacific (e.g.,

Penland and Sardeshmukh 1995). Also, Newman and

Sardeshmukh (2017) suggested that, since both LIM and

multimodel ensemble mean forecasts generally out-

perform individual CGCMs in the equatorial Pacific,

essentially unpredictable nonlinear interactions cause

random forecast errors that are averaged out better

in multimodel ensemble mean forecasts than in the

individual-model ensemble mean forecasts, in agree-

ment with the assumption underlying LIM. Moreover,

Chen et al. (2016) show a nonlinear inverse model

(NLIM) does not improve tropical Pacific SST fore-

cast results over the regular LIM, and Ding et al.

(2018) suggest that most of the central tropical Pacific

skill within some NMME models is effectively linear.

Further research is being done to test our findings in

a coupled general circulation model using both the

methodology herein, as well as directly applying the

noise forcing structures as an external forcing to a

coupled general circulation model.

While the present study highlights some interesting

cases, it is important to note the development of any

given ENSO event can be influenced by a rich variety of

initial conditions and noise structures. Further, these

noise structures themselves are a blend of a variety of

phenomena that can excite growth in the tropical Pacific.

While the role of noise forcing for ENSO development

varies greatly for each event and characterizing the struc-

tures within the noise forcing is challenging, the present

study provides a single framework for parsing through the

myriad processes that contribute to ENSO diversity.
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